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This pape presents a general quantitative system for aesociation
of theory &nd observation. . The system, in formulation and presentation,
is directed toward the needs -of the user investigator. It is well
organized for use with automatic machines in the computing and inforun-
tLion processing o . .

A multivariable distribution approach to modﬂl construction: 15
used in accounting for errors and other sources of variation. As usual,
hypothesized mathematical descriptions are modified in ‘accordance vith
the observational data. The requirement of & state of control is re-
garded as fundamerital. The question of unidentifiability 1s given
"~ prominent consideration; and in this connection, the general neceasity

' of calibration is established and emphasized. The principle of maximum

kelihood is suggested as the most acceptable ranking criterion for -
the system; but modifi-ations or decision-theoretic extensions are not ‘

precluded. In short, the ordinary reatrictive conditions are not impoeed

in this bystem.

The fundamental jdeas are diacussed vithin the contextunl frnmevork
“v - system. The general principles for applying the system are pre-
acited ‘and discussed. The most important classes of models are deal* B
with uathemntically in detuil.
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SUMMARY

The Prob lem

We are concerned hare with the problem of rmthematica* m'JdeJ

development in complex observational situati_.ns. We wish to adjust
- hypothesized mathematical formulations .in accordance with the observa-
ticaal data. This prob;.em is of course basic to all quantitative
science. Investi@ato.s, whatever their specialized disciplmes . are .
: currcntly comronted with a bewildering hodgepodge of sdientif 1¢ metho-~
.ologles. To the great majority, precccupled with their indivicusl
spaciaities, the extensive literature of potentially applicable mathe-
matics, statistics, philosophy of science, etc., will always b2 practi-
cally inaccessiblie. Also, those techniques which have ordinarily been. ]
- accepted and employed. ir general- r,end to embody unrealistic ausumptions,i :

inherent inade:qaacies, or both. : : ‘

o A generally valid system is needed vhich 15 reusonabiy émprehen-
siple, at least in application. In addition, the system showld impose

 no significant inconvenience on the. user investigator. Mcre or less
- generally valid systems have been attempted previously; however, re-

s.rictions on their use or problem'x of application hnve apparent]y pre- B
cluded their occeptance. :

‘ _l_?_es ults

" In this mper, a completely geneml system for model ieveloplnent,

~ is presented. The entire formulation his been carried cut as an attempt )

.to match the viewpoint of the working 1nvestigator rather than that of

"~ the mthemtical statistician, The system, in all of its omponent
methodologies, is principally directed to the understanding and con-
venience of the investigator. The valid association of thecry and.
observation is ac.omplished wvithout rescrt to restrictive conditious.
 Except for the most general and fundamental criteria, such as the
principal of maximum likelihood which is herein suggested as most
appropriate, any needed assumptions are regarded a3 solely the investi-
gators responsibility and as necesscry parts of hie initial hypotheses. .
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The eyetem organiution ia specifically orient ed toward use in
conjunction with large-scale automatic computing systems. It is pre-
suned that most investigutors vill have access to such equipmert in the
near futur~, and that eventually no routine mathematical analynis of
significant complexity will be attempted without such access. Thus, “he
matter of the investigators convenience will be resolved. S

. l"undamental 1deas. are discuesed briefly, within *he contextua) :
framevork of the system. -The geneml principles for applying the system
are presented and discussed., The most important classes of models are
- dealt with mtheunticallv in detail. It is hoped that. this papﬂr will

'ulso serve as a hnndbook of general investigative methodolog

iv -
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* INTRODUCTION

This paper pres>nts a gererul quantitative system for association

.cf theory ard observat;:lon. "‘Most phencmenn of sclentific interest are
. at leasu subject Lo the possioillty of quantitative description. Yhe-
" namens. sub ject to quantitative desrription are also subject to compact
-mathematical representation. It is not necessary that such represen-

 ta“ion be made; a camplete set of quantitative observations or data

. points con%ain in thcmselves all avatlable ‘nformation, by definition.
~However, it 1is our faith in the orderliness of creation, together with

. past supporting e.cperiance, which engerders i us the desire to 111

"in the space between the data ‘points.  We prefes to s2erch for mathe-
matical descriptions vhich not oniy account for nll past observationa

- but also -all possible observations, in order that prediction wiil be -
pcsoible. If a description (or model) 1s simple and elegant, and at

the same time serves to correctly predict a reasomsble number of subse-
quent obsexvations, ve ' feel ttnt uxxlerstanding of +the eub,}ect phe-xanenon'
has aeen achieved ‘ _

‘ '!'hus our stated purpooe 1n model development is deocription and ,
"t necessari]y decisive action. It is of course implied that d- serip-
‘tirn eventunlly leads to decisions and actions, but actions of character
an.. purpx.e yet to be established. Specifically, the c-iteris of future
‘decisicns, and the vtility values of the possible ultimate conaequences,
- are at’ pmaent unknown. - - . ,

- - The deciaion-theorettc approach m. uttained great stature, but
not every investigator can adopt s completely behavioristic philoeopby ‘

Probably most will remain fundamentally reelists. - Nevertheless, noth-

. ing precludes the inclv3ion of dec:l.lion theoretic conside"a.ticma lnto
‘ the methods ot this pay T,

‘We are concerned |- 4re with the problam of model development in
complex observational s ituations. In ouch cases, simple and elegant -
descriptions are difficult to obtain. Econcmic pressure or urgent
 necesgity may force us to resort to oversimplifications and unjustified
assumptions. Unfortunaiely, descriptions cbtained under such conditions
ere not likely to be useful in prediction, and their contribution: to



understanding is likely to be small. The usual strategy in dealing

| - -with compler problems is to attempt a division into more manageable - . =
subproblems. Hopehlly, the surhproblems wilil respond to the available -

nvestigstive procedures. liere too, the results are ‘not always success-

. In this paper an opentional system is proposed for use ln develop-
" ment of. complex mathematical models. -To this end, consider that com-
‘plexity in observatiunal situations can be converiently divided into

tvo clesses. First, the complexity mpy te due to a muit. 1plicity of in-
‘fiuential variables. Second the canplexity may be. due to the presence :
of . interacting phenomena.. S

, In the first instarce, if the number of influential variables is
'very large, it may be best, in the judgment of the iavestigator, that.
the variables be grouped and their combined group influences be observed
and desciibed. For example, a group of influences, unobservable indi-
vidually,may be repr sented in combination as a random variable. - Or,
if the number or variables is not so large as to justify grouping, the
investigator might not wish to so simplify his - theory. - Instead, in
, spite of the canplexity, ‘he may elect to describe deteministicall,/ the
. 'relstionships between the numerous varisbles tsken mdivtausl..y. '

o ]_:n the second 1nstance, it may be—the oss,e that two or more dis-
tinct phenomena are so interrelated tmat they csnnot. be observed in
isciation. For example, most measurement phenomena are subject to

interaction with those phenomena which are the errors of observation.

" Also, 1t is a common occurrence, that observations can only be made

indirectly. Taat is to say, the uncbservable variables of primary
" interest can only be detem:lned as functions of vurisb‘es vhich are

o direct]y obsemble. :

| Any mten for dmlopment of couplex mthmtica’ mode1s must be
sufficiently general to encompass these situations. In the first
instance, means must be provided for either grouping, or individually
relating, the influences of variables, or both simultaneously. In the
. second instance, means must be provided for separately describing the .

_ effects of interrelated phenomena. The system herein presented is

. @enerally applicable, it is reasonably simple in conception, and it
‘lends itself well to use of automatic mohines ir compuuation and in
inromtion proceuing. o ) ' R T

. The need for an orgsnued or systemtic approsch to model develop-
ment has become ¢  easingly evident in recent years. This is due in
part to the acce. .rating irerd toward greater camplexity cf reseerch
problems in all of the quantitative sciences. But in addition, a wide
- variety of problems, are either inadequately treated or are completely




~ intractable with current]y avaihble methoda. New methods are intro- ‘
duced here vhich have resulted in the solution of the previously intrect-
ab.le’ problems, and which at the same time, have provided a basis for the
organization of model developnent wvhich is presented in thil paper.

- It is perl'nps helpful to mention scme mJor fields of nenearch

" which will benefit from use of this system. For example, in the bio-
logical sciences, reaction rate models are assuning increasing import-

- ance, and stochastic models are more widely employed than ever. The
large number of variables and 1nteract1ng phenomena irvolved in bio-

" logical systems has resulted in a generally unsatisfied demand for
accurrte mthemtica" ‘models. Operations research is concerned almost -
‘exclusively with nnthenntic.al model develomnent. With reference to
these models, decisions are frequently made which are of great and
immediate importance to society; consequently, the risk in reeorting

to inadequate or inmaccurate models ic large. The social sciences -
generally are in need of accurate ana wseful mathematical models for.
compiex phenamena. For example, ecunumetric amn lysis has been hampered
by the lack of adequate theory ir model construction; although consider-
"able progress has been made in this field with linear and polynomial
models. Also, th: physical sciences are no less influenced by the
trend ‘toward research interests in complex phencmena. The relatively.
recent introduction of multidimensi-nel pulse-height analyzers (high--
speed, digital, multivariable data point recorders) is 1nteneif'y‘og the

" need for precise methods in data 1nterpretet:lon.

At this time, it is not :I.mppropriate to s\cger‘ cat a reeeonsble
degree of standardization be introduced in scientif:c method and report-
ing. Potentielly, this can occur as a useful byprodust of the system
application. In some circumstances, where problems in research manage-
ment exist, the basis may be provided thereby fcr contrvl of research
- quality. But most useful perbaps, is the improvement in communication

- which may reeult. - It shuld be poseible t0o readily comparc or cambine . -
models developed under widely varying research eaviromments. Fimally,
use of genermlly accepted procedures together with automatic data yro-
cessing can seiv:: to free soarce professiomal :l.nnati@tm from many
‘ routine or pcr:l.phenl upecte or reunrch.

B mckggound Note

As eteted, the genml problun with vhich we are concerned 1 tlnt
of the meaningful association of theory and observation. Here, & pruc-
' tical user-oriented system lar been presented for the development of
mathematical models. The caloulus of probabilities and the Principle
‘of Marimum Likelihood have been employed. First to apply the calculus




Véf pfdbabilitieé for these purposes was Thomas Bayes. = Carl Priedrich -
Gauss was firet to formulate and apply the Principle of Maximum leel.l-«‘

. hood in 1809 (see R. A. Fisuer (4), pp. 20-21, and H. F. Trotter (13),

-pp. 127-). Gauss approached the general problem from the. point of view
of his leest squares thnory.

. In the interim, the completely geneml problan has been nrely con-
- sidered, at least from the practical point of view. On the other hand,
-~ restricted problems have been intensively investigated. In particular,
. methods assuming linearly related or normally distributed variables
-dominate the literature. These of course include such approaches as
. analysis.of variarce, correlation anal,ysis, and regrpssion analysis
With respe¢t to model development under restricted conditions, linear

* and polynomial regression have found wide acceptance, However, a per-

- sistent interest has been maintained by a relatively small number of
investigators in the more general problem of more than ocne variable

"subject to error. Lhmr techniques, valid for restricted conditioas,

~ bhave been developed. Excellent reviews aof th:ls wcrk are offered by
- M. G. Kendall (6), and Albert Madansky (8) : ‘

: Several attempts to provide user-oriented systems stand out.

_ W. E. Deming (3), in 1943, presented a general system based on the

" principle of least squares. . Many somevhat less general expressions

of the least squares theory have been successfully reduced to practice

" using dizital. computers. For example, R. H. Moore and R. K. Zeigler
 (10), 1960 vere among the first to develop a useful and well-documented
ognm for genenlized non- -linear regrenion.‘

L 'l'ne most signifiennt, as well as the most general, ap'proach pre-
‘viously cffered is probably thatof Trygve Haavelmo (5), in 194k4. The
treatment s thorough, it is a system in the sense of this paper, and

it is oriented, at lesst in spirit, to the needs of the user investigator

(in this case econametricisns). Also, the mathematical formulation -
~ constitutes at least one or two additional model types (vhich are not
included in this paper). However, the formulation is quite complex and,

f . a8 acknowledged by the. author, appears not to be readily mansgeable in

practice. (For example, tvo nonlinesar trensformations and two integra-

 tions are generslly required for derivation of the observation model
hypothesis.) Also, the initial hypotheses required may be much more

- appropriate to econamic theory than to that of other disciplines.

~ Nevertheless, it is unfortumate tlnt this vork has not received more

’ widnprad attention, ) ,

" In this ppor, ve have pu-ucuhrly upired to smple, ensilv
‘accertable, and manageable formulations for all model types. For
‘example, the "mnectim-pro.)ection tnnsfomtion of this pnper,




effected by substitution, is essential to simple formulation where

‘models involve structural relationships. This device seems obvious .
enoxgh, as will become apparent; it is frequently applied automatically,

without specific reference, in trivial cases. However, it has apparently

~ not been used previoualy in general fomu.latims od‘ the type here under ’
’ consideration.

In this paper, it is emprasized that distributi ~ns . need not be
random; &and here also, the proper use of systematic distributions is
indicated. A similar view on the concept of random selection 1is expx'es-
'sed by R. B. Braithwaite (1), 1953. However, there seems to be no pre-
vious recognition in the literatu.re, and certainly no emphasis, that
existent systematic distributions, and in ;articular ‘purposeful syste- '
matic distributions (as in experimental designs), are appropriate and .
frequently necessary elements in fomu]ation of concordant sets of =

}Vpotheses.
The definitive consolidation of" vork on unidentifiabilit_{ was given,

'in @ paper by T. C. Koopmans and O. Reiersfl (7), in 1950. They begin

with recognition. of the fact that a canplete]y general formulation of
the problem of statistical inference must encompass not only observable
populations,. but in consideration of errors of observation or other dis-
turbances, the theory or structure cf the underlying true phencmena
which.is thought of as generating the observed distribution must also

~ be considered. The problem of -identification is then said to be that

. of dreving inferences from the probability distribution of observed -
variables to the underlying structure. This formulation, by Koopmans
and Reiersgl, may be thought of as constituting a non-geometric, non-
operational statement of the Basic Principle of the present system.

~ Both expressions are closely related to the c'assic view on the influ-
ence of errur as expressed by Gauss (13), 1,2: that errors are -
either constant (systematic) or irregular gnndm), and that the con-
atent error cennot be eetimted frcn the obaemtiona ,

: In addition to the abouve iutroductoz'y ccntribution, l(oopnna nnd

' Reiersﬂ ‘80 on to express in greater detail the general concept of ,
‘identification and to give examples. Their paper mekes two other points
vhich are pertinent here. Pirst, we are varned (pp. 269-170) against
the temptation to specify models in such a way as to force identifiabii-
. 1ty, since scientific honesty demands that specification of a model be

based on prior knowledge of the phenomenon studied. Second, they point
- out (p. 179) that even if sll parameters are not identifiable, it re-

‘'mains possible to construct identifiable functions of these parameters
vhich constitute useful scientific information. Thus, the appropriate
Vdirection of subsequent work would nen to be clenrhr indiceted.r »




In view of the above background, it then beccmes relevant to ask
vhy o workable and acceptable system of adequate generality mas not
been previcusly constructed. Several possible explanstions come to
‘mind. Principally, the general necessity of resorting to specially
constructed calibration models and ultimtel,y to actual calitration in
order to resolve problems of unidentifiability in complex observational

~ situations has apparently not been recognized. The emphasis in the

literature .as been on determination of those conditions necessary for
camplete identification in restricted situations. In this connection,
_refer again to Madansky (8). There appears to be no recognition that
the information required to verify such conditions must te obtained in .
most. caees' by actual calibration. Further, any other means of obtain- -
ing the needed information constitutes effective calibration. Thus, .
it is perhaps a principal contribution of this paper that calibration
. (or effective calibration), long regarded in classical error theory
as an essential feature in scientific. method, as applied in simple

- measurement situations, is here established as also essential in com-

plex observational situatlons. Complex phenomena are of course widely
employed as "controls" in experimentation, but these are trivial

: 1nstances of calibratton.

, "his doea not entirely explain the apparent prenatu.re abandonment
- of generality in most of the literature. It is possible that preoccupa-‘
tion with pencil and paper analytic tractability has played a part. S
Thus, it is appropriate to point out the advantages of canputer oriented o
mathematics, particularly in avoiding problems hnpoeed by the limit,ations -
of the notation. ,

: As 18 well knO\m, the concept of et.ete of control i8 due to w A.
_ Shewhart (12) 1939. Suitable introductory reeding is prcvided by
' Munroe (ll), Mood (9), end Crmér (2).

. THE BASIC PRINCIPLE OF THE SYSTEM

. Por purposes of this system, the phenamenon under observation is
theoretically represented by a distribution of points or events over
~ the Cartzsian space of all variables (herein coordinate variables) -
. which are considered to be influential or otherwise of interest in the o
investigation. It is demonstrable that such a representation may be
made. The distribution is generally hypothesized in the compact forna
of a joint density function, either over the ' ntire apace, or over
appropriate subspaces. 7he eaact manner in vhich such representation
is accomplished, for the moat likely special situations, is resolved in
“this znper. The gev :ral method is also diecueeed.

6




o model space. In general, not all arguments of the dinsity function’

| Since the model 18 a deusity function, it serves to specify the
distribution of weight or mass of potentially existent events over the
are randam variables; some coordinate values may be sclected systen-
‘atlically in accordance with a prearranged experimental design. In

',other words, genemlly it is not a probability distributior which is
speci“ie i, if by the term "probability" ve imply rendom ‘selection.

Not all variables of interest, and vhich are represented in the
model, are also observable. Of special interest are the errors of -
observation and the associated mrpotheaized true but unobsemble vari-
ables which they modify. That is to say, we distinguis,h between observ-
able variables subject to the error of observation, end tie associated
' unobservable variablea in fact, which would be free uf error could they
" be observed directly. Denoting. actually observed values by subscript o,
- and errors introduced in the procesa o observation by e, the rehtion-
ship is as follows:

Bk re

" In this situation, all three variables are of interest and all
three are necessarily included among the coordinate variables of the
model space over which the phenamenon of interest, including those -
aspects of the phenamenon vhich are. exclusively related tc ihe proceu
of observation, is hypothetically represented. Thus, there exists a
subspace of those variables subject to obaemtion.' 'i'o these ve now
direct our attention. ' I

The subspace of the obsemble varisbles my be thought of as the

'neans whereby the phenomenon as represented by the model is revealed

to the observer. In the same way that we might view the 3-dinrnsiom17 )

interior of a house through a window, a 2-dimensionel aperture, the
sut space of observable variables funcf{ions as a vindow through which

ve may viev the higher-dimensional representation. Indeed, by defiai- o

tion, no other avenue is available. However, it should be noted that
- what is observable by one method of observation (one set of instruments,
* one group cf investigators, etc.) is not necessarily observable by

‘another. Thus, the same phenanenon night be vieved throosh a nmumber o

of dirferent windows.

, In this syatem the method of vieving consists of proJectim the
- event mass image of the model from the model space of all variables of
-interest, onto the space of observable variables. This is usually S
 accomplished by integrating out the unobservable variables. That is to
‘say, for each point of the observatle space, the distributed event mass,
as given by the Joint density i’unction model, is sumed for all vuluel

L g IS———
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" of the unobservable variables. The resultant joint marginal density
- function servea to speciﬁ' the distribution ot potential]y obser mbla
. events.’

A precise amlogr, which is at ‘the same time an actual eu.nr,_ T 7
13 given by. the process of X-ray photography. Here the model 1s 3-

- dimensional and consists of the object being rhotograpbed. The observ- -
" able space is a plane, the essentially 2-dimensional X-ray film. The

density function over the observable space is given by t)v- distributlon '
of precipitated silver - } -

- The basic principle of the system shou.ld be emp‘nsized. ,

.ncigle The ‘istribution of e'omrent events over the space of .
observable variables constitutes cur total knowledge of the-
_real unobservable universe. The apparent distribution is
literally a projected image of the. distribution of real
‘events over higher unobsemble spaces.

. ASSOCIATION OF THEDRY AND OBSERVATION

" As additional foundation for construction of the syatem, 1t is

presmned that quantitative acientific knowledge is- best advanced by
) the following sequence of operntions' ‘

1. - Consider mst theozy and obaemtion.
2. Formulate new and generally incomplete lvpotheses or models ‘
3. Employ observatioml dau in completing the one or more formu-
-~ 1lated models.
‘4, Faploy additional obsemtionnl data in evnluatim and compnr-
- ing the cmplcted nodeh or thcories. : _ .

In the event that ccnp...ct.e nodels are Wtheeized, the third operation' .
may be dispensed with. However, this is not generally advisable, since
- in many 1r not most cans, such a procedure vould e tantamount to

. guesswork.

, . It is presumed that the Joint density function model will not be
canpletely specified but that, in consideration of past theory and '
) obsemtion,“only the mathematical form of the model will be hypothe-
ized, That is to say, the hypothesized density functlon involves -
unknown constants, parameters to be evaluated in consideration of
Vobservatiunal data not inrluential in fomula iun of thc. incomplete
‘model, - ‘




‘ In *his system, the principle of mximn likelihooi is suggestod
a8 being most generally acceptable for the purpose of evaluating or
 estimating the unnown constants. Given a set of observed puints ar -
~ selections, the individual events are presumed to be independent in
‘the stochastic sence. Whether o1 not obgservations or selections are

- randam, it will subssgyuently be seen that the presumption is Justiﬂabie., 7

- PFor each point observed, the observuble-event density 1s expressed as
- a function of the unevaluated parameters. The product of all such

functions is the l.ikelihood function, defined over the parameter space.

The product of 1ndependent event densities ordinmarily yields the

‘ densitx ‘'of the model space joint event. However, as a function of the

parumeters to be estimated, it is said to express the likelihood ‘of

the parameter space joint event. The maximum likelihood parameter

" estimators are given by the coordinates of that point in the pmmeter

space for which the likelihood function 1s maximized. " However, as vill

be seen, thege estimates are not necessarily unique. Fcllowing evalua- -

tion or estimation of the parameters, the completad model may be com-

pared to- alternate th:cries, using likelihood as the ‘ranking criterion, B

garxitheaamedntainsacbcaae."» o '

DESIGNATION OF THE PHENGMENON DESCRIBED BY THE MODEL

Given a particular density function model, there is a question as
to whether or not the representation has meaning. It has meaning only -
to the extent t}nt the phenonenon reprelentod can he othervise uniqualy
deaigmted. '

Ve apeok of th. phcnomnm vhich is tln obJect of our inveatiautim, o
the object phencmenon, as er entity; thus we imply that its essence is

. unchanging. In a sense, ve presume that the variation represented by

~ the mathematical model is superficisl variation, having no influence
~on -the essential character of the object phencmenon. It is this euen- s

- tial unchanging charecter which must be uniquely designated if the

quantitative description of nmtion is to be unambiguously interpre-
"~ table. It 1s therefore reasonable to require, in addition to the

- specifications of the mathematical model, a charecterisation, consisting -
of a set of desigmating statements or classifications which, whenever
or vherever applicable, serve to effect the valid association of the
object phenomenon and its mathematical model. Thus, by dofinition, the
vob,ject phenonenon occupies tho chu mtcruction. ‘

. In a g'ven instance, th. association 1s invalid to the extent tknt
the model fails to deo_cxipe t.ho object phenomenon as designated. - o




Assuming that the model parameters are so selected, according to the
- initial data, that a good fit of the model to the observations is ob-

- tained, it cannot be said in a later failure, whether it is the quanti-
tative hypothesis, or tue designating classifications, which are in
error. From one point of view, the quantitative model is 1nadequate

“in that a source of excessive variation exists which is not represented.'

- Or alternatively, the original investigator was careless or unlucky in .
that he fiiled to campletely deeign.xte the cmditions under which he '

- de bis obsemt.lons. . ‘ ,

. F'rom anot.mer point. of view, a. phenomenon wh ch is: adequately, deéig? -
‘nated, or which is reprciaucible; is necessarily in a state of controi.

. A ‘phenamenon inadcqmtel/ designated, or unreproducible, 1s out of

control by definition. However; in the same sense that not all vari-.
‘ables of interest are observable, not ell significant classifications - -
are obvious. Where a’ state of control is not existent, it is theore-

- tlically up- to t‘xe investigator as to whether or not he will attempt

-~ to account for the unrepresented variation by altering the form of the

- mathematical model, or by placing further restrictions in the form of
classifications cn the _phenamenon to which the model applies, and
thereby narrowins the s )pP ol the lnvestigation

. It is genemlly the ursats, sfactory solu’cion to correct a poor rit
" by narrowing the scope of the inveetigatim. ‘It ‘1s better, if possible,
to interpret a poor fit as specification error in the form of the mathe-
matical modei. In practice however, the investigator may be deprived
" of the choice which is rightfully his in theory. If the phenamenon is
" not in a state of control, that is to say nct reproducible, then it is
possible that a new mathematical model, so specified in form as to ade-
quately describe the observed variation, will not be useful for the :
origiml ‘purposes of the 1mrestigut1m., ‘

: From thn above disc\uaion, ‘two things are appren - Pirst, it 1s
essentisl that models be reexamined under the widest possible range of °
conditions within the limits imposed by the classifications. Ir prac-

- tice, cxpcrionce with phencmena similarly classified may Justify somc -
relaxation of this requirement. Second, the care taken in classifying =
: the object phonc-mon and in writing the designating statements, must .

" correspond to the effort expended in developing and establishing the
 quantitative theory. “hese remarks nppr with particular force in the
application of this systea, sinco in 11:: ‘use ve upire toa high order

o of discrimination.

~In conclusion, at least one mndmnul condition must applY in
“ume of the system. We require in all cases that the object phenomenon .=
as designated be reproducible or in &« state of control. More przcisely, -
ve requ.ine that the rinite ut ot obgerved evento which are actmm '
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obtained conbtitute a re gresentetive sample of a potential.'b inf‘.nite
population of observations; specifically that pcpulation which is
uniquely associated with the object phenomenon as designated.

‘DIS’I'RIBJTIONS MAY RESUI.E‘ FROM EI'I'HER RANDOM (R
* SYSTEMATIC SELECTION -

It has been stated that in this system variables need not be ran-
" domly distributed in order to be described by a density function. ]
Before this idea is put to use, it should be discussed in some detail.
In a given observationai situation, the values of a given variable may

° be either purpos 2f iliLy selected, or they may occtir as a natura. conse-

quence of the phencsicnon -under investigation, however, in either case
they my be either 'andanly or systemtical.ly distributed. ‘

The idea of mndan selection is historically associated vith the .
idea of a lottery, or blind selection after mixing of objects distin- = .
guishable only by sight. The important characteristice, for the purpose
of this discussion, are first that the objects are contained and conse-
quently the distribution is stable, and second that miring is employed. :
To say that the distribution ie steble s to S&Y that a atate oi’ control o
exists. ‘ :

. The mixing idea is related to a subJective interpretation of pro- -
bability as degree of reasonahle belief. Participants in the lottery
agree that it will be fair if their mutual ignorance of future selec-
" tions is assured hence mixing prior to selection, or mndan aelection, '
is required ‘ . .

If we also impooe the requ.irenent of rephcanent tonoving eech o
selection, then the population of selections becomes potentislly infin- -
~ ite and, in consideration of the n'xing, the individual selections are
- stochastically independent. Thus, at least in this case, the usual
- acceptable conditions are eshblished for ccnetructim of a simple -

: 1ikelihood function.

Hovever, in valid applicetion of - the lylten ve require that the
obJect phenomenon as designated exist in a state of control. This
being the case, the ultimate finite set of selections (or sample) ob-
tained is reprecsentative by definition. The additional requirements of
random or stochastically independent selection are only incidental meane
to attaiment of that wvhich is already provided. Once we are in pos-
‘session of a representative sample, the means of its ._ttainment are

11




imaterial. We can arbitrarily treat the indivmual selections as tnv-,‘ :
ing been obtained under conditions of stochastic !ndependence, (and
form the likelihocd function accordl ngl,,r) vhether or not such was the

. case, Specxficaliu, systematic or nrdered selecticn 1s not invalidated,
- since a representative sample can be reordered or mixed without affect-
ing either ‘ts‘repreeentative character or the ultimate mximum likeli-
hood utimacors. . However, there is nore - to be sai d

It is int eresting ‘to consider- some advart.ages and disad.rantagl_s
with respect to randcin versus systematic selection in thouse situations
wherein the investigator has the choice, that is where selection is.
purposeful. A principal advantage in random selection lies 1in the
~ simplification of the model tha® is its frequent accompaniment. There
" mey be variables which are influential in the object phenomenon, but

"which are ‘not of interest in the investigation. The effecte of the un-
" wanted- variation may be discounted by uniform random selection of ob- .
_servations over the space of the unwanted veriables. For example,
_-suppose - &n investigator wishes to estimate the mean moisture content -
of a carload of wheat. Suppose that the car is known to have reen
loaded in several batches, thereby imposing an internal stratification
. of unknown structure con the carload. If. the structure is of interest,

"~ _then the spatial coordirate variables should be included in the model,

. along with hypotheses concerning the form of the interfaces. Nothing
" 1s wrong with this approach, except that the model is unnec,essarily

- complicated. In practice, observations would probably be taken at

- random over the volume of the car, fran vhich the sample mean moisture

e _content would be f-auputed. :

' he question my now be asked as to vhcther a syetemtic u.mform
selection of observations over the car would not be better. To ade-

. quately cover the volume with evenly spaced observations, which are -
sufficiently close together so as not to miss or otherwise give improper

weight to the individual strata, would probably require more observations - :

‘than would be noml].v required for a random sample. In another situa-
tion, cyclic effects right be adversely influential if the systematic

. selection is in phase. However, systematic selection can also be de-
signed specifically to either mmsk or detect cyclic or other systematic
effects, particularly vhere additional infommation is availaple. In .
fact, wvhere econamic and physical factors are not influential, it is =
conceivable in any observational situation requiring purposeful seJec- c
tion, that & design for syetemtic selection of observations can be -
found vhich is superior to randam selection. Of course economic and
physical factors do intervene. If the investigation involved selection
of representative bowls of soup from a large container, it is certainiy
more reasonable to actually mix the soup prior to ladling, retrer then . -
to investigate the spacial distributicn of the constituents 1n order to
achieve the dnsired result through deductien.

12
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- There is surely nc virtue in {gnorance for its owu - sake; yet ran-
~dom selection is sometimes used when there is no compensating advantage.
Consider a distribution of purposefully and systematically -elected
points desigred to closely approximate the normal or Geusscian distribu-
~ tion. - If selection is properly done, the points may be plotted as a
smooth histogream. -However, the distr‘butiou aof the same number of
points, selected.at random according to-the normal distributior, and -
plotted as a histogram, generally 1s a fairly reggec configuration. In
e situation vhere the selecteu points are usea in an estimation Process, -
‘and: wherein confidence in the estimte 1s *ncreased in proportior to the
extent that the selected pointv set is actual.y repregentative cf a nor-
‘mal distribution, then the systematically selected polut set is to te
preferred. The additional noise introduced {n random sa.m“lmg can only -
serve %o increase the variance of the estlmate.,

In arw case, for purpo. es oY the syste:n, Ato! dis'tinction'is mde
‘between randomly distributed variables and syste: .tically distributed -
variables. With respect to the concept of probability, and to the .

. extent that it is found to be useful in applying the system, protabin- -

o tiee . ny be simply interpreted as objective:Ly detem.ued measares of

"~ degree of reasonable believabi. ity or confirmation; Tc the extent that
application of the systen *ecuxrs in the generetion of such measures, .

' p*obability can be said to oe operationally de; ined.

MATHEMATICAL THEORY AND DISCUSSION

~.In the remsinder of this paper, it is the purpose to first discuss
~ the general aspect of model construction in the context of the system, -
then to irvestigate seve .1 useful model types and to outline the speci- -
" tic oteps in their cmstruction, and fina] Lv to discuss samne aepecta of
impleme:. *tntion. ‘

. 1In t’ne usual practical application of the eyatem', ar. ‘invest’:'\.gator; ,
is expected to select an appropriate staadarda model type. For example,
12 his ultimate goal is the abjlity to forecas! a single random va.riable

ewent, be will probably cnoose a. regmuion model. The number of stand-
. ard model types may be increased without limit, but only the mosi usefw
"~ types need be cetalogued. BEventually, there should be a large nuxr.ber _
from which the 1nveetiga.,or my chooee. ‘ .

I-‘or each standard. rode). typ., a canputer pru;mm should he prepared. o
Having designated the object phenameaon, formulate e hypot' 'ses,
epecified the associeced mathematical forus, and collecte’ ris cata, the
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~ investigator employs the appropriate computer program in evaluating

~ the parameters. Resort to autamatic mschine computation and informa-
tion processing not only eliminates the drudgery but enforces the de-
sired degree of standardization end objectivity in the analysis. '
Ideally, the conputer should yield a report of- the investigation, an
- integrated presentation of the phenomenon as designated, the data, the

- completed hypotheses, and other us~ful information,

- Ipitial. }b’@theses

In most model typee to be discussed, we distinguish between the -
phenamenon of primary interest, namely the object phenomenon, and that
phenamenon which is the act of observation. The hypothesized true but -
~ generally unobservable variables of primry interest the object, vari- o

ables , are generalJy denoted '

l) x2 = -VV- -'.; xn'

The mthambical ‘ifpresentatiOn of the obJject phenomenon is referred to
..as "the object model".. Included in the ob,ject model mfpotheses, ‘as
initial_'ly specified are: . ,

1. Joint, mrginsl, or conditiorml density functions which des-
cribe the di:.tribution of various subsets of the ob,ject vari-
- ables.
2. - Bquations rehtiug various subsets of the object variabies
(I the variables, as specified free of observational error, -
are naturally so related, the equations are said to describe
structurel relationships. In other cases, they may describe
' prediction or regression relationships.)
3. Inequalities relating various subsets of the ob,ject varisbles.
" (These relationships serve as constraints on the distribution
of object variables. They specify the region boundaries, when
- such exist, over which the joint density functions are defined.

Consequently they are part of the density funciion specificatious. -

L, In each of these fun..ions or relationships, unevalusted pare-
. meters 6 will probably be involved; in which case, known or -
~ hypothesized constraints on the 6 are elso included in the
initiel specificationl ‘ ,

‘ In most cases, the object varisbles , being unobsemble, are speci-
‘fied free of observational error. Corresponding to tine individual object-
variables,are hypothesized but unobservable errors of obsemtion. _The .
' errors._ are denated ' ,
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’I'he mthemtical representation, whis.h by hypothesis describea the dio-
tribution of errors of observation, is referred to as "the calibration
model”. This distribution of errors is generally unknown; but the func-
~tional form of ‘the Jjoint error density function, which mey or may not
involve uneva luated rarameters, is hypothesized. It is usually prefer-
 able to describe the error distribution as a function of the associated
- object variables. -Consequently, the calibration model 1s . geneml:ly
specified as a conditiona.l Joint error density function, an emmple of
which is here denoted . ] B ]

* (el)°--')e /xlt"")x H O)

‘Here, ¥ 1is used to denote density'functions generically, while the 's"pe- o
cific function . is unambiguously identified by the arguments. @ denotes
a vectar of parameters to be evaluated. o ’ ‘

For any fixed pcint (xl,----,xn), the associated Joint error densi*'y
-is glven by the calibration model. Thus, ve say that the object vari-.
ables enter into the conditional error density function pammetricalJy ;
that 1s to say, they are treated as conatanta. ‘ :

B T I

It is appropriate to mention at this point t)nt, although the den»i
s8ity functions are not necessarily probability density functions, they .
- have the same mthemtical properties. Given a density runction | 3

1. v is defined as event mass per unit of the diatributed varinble [
‘ space, for every point in the splce of all arg\menta, including
~ - those which enter pmetriotl]y ‘
- ¥ is everywhere positive.
, 3. Event mass is additive. '
b, ™tal event mass over the dintributod vnriable splce is .mit
o mu.

We are therefore freo to nk‘g ‘u.'efot, the caloulus of prob.bilitiec. oy
Specifically in the situation before us, the conditional joint error o -
density f\nction w be expreued as & ratio of two Joint demity '
-functions. ‘
'(91,"";°nnxlp"”pi 30, .)

'(xlt ""'")xn 30)

* (ely"":e /31””')x oo) -




Here, 6 denotes a. vector of parameters.

'I'r»e observable variables, tme obJect variables vhich are masked
or modified by the errors of obsemtion, are defined and- denoted as
follows' : : .

Xox = Xt e k= 1',----,n.7>
" “We refer to these as "the error equations"”. The term "error" 1s under-

stood to signifv any influence or set of influences: which serves to
"mask or displace the value of an obJject variable. .For example, &an un-

o known lag assooiated with a time variable my be thought of as error.

Ultimtely, we are interested in an observation model a Joint

- density f‘unction moiel over the space of observable variables. 1In

app..ication of the system, we propose to obtain the distribution by.
projecting event mass from some hyperspace which includes the c-zervable

"~ space as a subspace. In theory, it makes rno difference which hyper-

‘space is used, or how the hyrerspace model is initially specified. =
However in jrac ‘tice, certain procedures are more generally useful. For .
example, it .s fcund that initially transfoming or projecting the =
calibration model onto a space vhich- includea the observa‘ le space is

.a generally useful procedure : : :

'Ihe Erroi 'I‘ra.nsfomtion

Consiier the Joix‘t density function v(el,---,en,x '—4- xn)—. Event.
mags is transformed as probability is transformed; that is to say, i -
sceordance with t.ae caiculus of probabilities, the absolute value of .
the Jacobian of the transformation ie used. Using the error equations
~ a8 the equatlons of transformation, the transformation is linear, and = .-
/3/ 18 always plus one. Thus, the transformation is effected by aimple '
ubstitution from the error eqmtiuns intc the denaity tunction.,, ’

'(el"‘)en; noe ""lxn) =yl (xo]_'xl):"'r(xon‘x-n)pxl.""' ] , |
= V("oy"':xon:xl:“' xn) |

Dividing both sides of the resultins "quation by the marginal denaity )
¥(xy,---=,x3), ve obtain the desired conditional density function.
The transformation 4.| denoted u fo lows:

ﬁ(eli""¢n/xlx"‘:xn) -‘ V(xop"‘:xm/‘xlr“,";‘ﬁ,)-
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" The gecuwtry of th° transformation, for one. object variable, is shuwn
in Figure 1. : . :

| quri‘ace Dens¥ty Functions

‘ Another generaily ‘useful technique in derivetion of the observa-
tion model hypothesi- consists of eliminating by substitution variables
which enter paerametrically into conditional density- functions. The
subotitution is valid if the variable to be eliminated is a single- o
valued function of other variables which enter into the function para-
metricalily. Geometrically, the effect of this operation is in two
stages. First the joint event density function is effectively inter-
sected by the hypersurface of the single valued functicn;: then, the
~onditicnal event mass, which is thereby distributed over the hyper-
surface, is effectively prOJected in the direction of the varieble’ to
be eliminated, onto the’ subspace of the rems*ning variables.

RS P

L. s @

~—

‘For example, suppose that xj = F (x2,---,xn ) "This is & struc-
"tural relaticnship between object variables. We also suppose that ¥
- is a single- -valued function. 'Here again, & is a vector of parameters. . .
Given a conditional density function Which is defined for all fixed
'points of the Xj,=--==,X, Space, the’ existence of the structurai relation-A
ship exclusively associates the density function with points-on tle F-
surface, which is imbedded in the xj,----,X, space. . Since F is single-
" va_ued in the xl direction, the density function can be mapped one-to-
one (prOJected) onto the xe;----‘xn subspace. The subspace and the F- - b
surface are of the same dimensionality, of course. It is not recessary . - 1
thet F be single-valued; but structural relationships can usually be so
pecified, and a mapping which is not one-to-one can result in & signi-
. ficant logs of 1nfonnation.

e W -

' If the conditional Jensity function is the previously discussed
cslibration model, the‘Fvintersection is executed as foilovs'

V(elyf»'°:en/x1")"'fr‘;:xn‘.'f)r = ‘v;(el'.v.-’,e‘n/!j(x;?’r--,-fxn’e))x2’. -‘--',xn';Q») .
*-,*(el’ "'r':eh/xai'r“i*hio;QEF)' 3

Punctions of this type may be thought of as generalized or "surface

‘conditionsl density functions", over the F-surface imbedded 1n the ' o
()rigiml 61) "‘,en,XI,xa,-“',& che. . - -

' Wde denote this transformstion in either of two ways: either to the

surface conditional uensity over the F~surfsce imbedded in the higher
or!qinal space, : s




|
]
{
f ,
L%
’
A Ly I A U Mass e ECTED INTO
Thane. seva 7' oA - - S TRAN rmumu ; N OGURFATL
’ L [ 7 : X ’ V v "
Pg. 1_':4.nuotnting the oeouu-y of the Ermr ‘h\nr.fomtion
| v(cx/x) - v(xo/x)
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W'(el, ',""en/xl"_"",xom)' 7 - *(el’ -’--,Ven/x2,--r-',xn;9,O;P)

V or if no. coruusion results, by projection to the ordinav-y conditioml
density over the subspace.~— :

. y,(-el,r“-fé,en/xl—,f;‘fi,xn;o) ' "",(el”y"?en/,*z'"",’xn;e’o)@

The geometry is shown in Figure 2.

concordant protheses

We now - consider an- imoortant criterion in the construction of any
wodel It is necessary that the model components, as initially specified

' yprovide ‘sufficient information for derivation of the observation model

hypoche51s In general the observation model is a joint density func-
tion over the space of observable variables. Consider that the number -

_ of ways can be very large 'in which a joint lensity function can be rep~ '

resented as the product of. marginal and conditional density functions.
For only three variables , there are thirty ways Also consider that

"+ the observation model joint density function or any of its potentially

numerous factors must be obtained from the originally specified. model
”<omnonents, some of which are also joint density functions, by an

initially unknown series of transformations or projections in accordance ;'
-~ with the system concept. Further, the conditions of the- investigat‘on E

 usually predetermine some of the initial model specifications; Aimposed
combinations which may be awkward in the analysis. Thus, included in

the general problem of hypotheses formation is the not generally inq.g-
nifif‘ant problem of satisﬁ'ing the sufficient informtion criterion.. ‘

Overspecification, or too much mromntion, is no less of a prob-

. lém, since it can result in an inconsistent, or at best, an inadequate

model. Thus, a set of initialdy specii‘ied model componenis is required,
vaich is sufficient for derivation of the observation model hypcthesis,
and which is also necessary to the goals of the investigation. Such a

set will be called a "concordant set of hypotheses". A principal prob-

lem in model construction is ’ of cou.ree, selection of the appropriate :
‘ concordant set. ) : ’

) Available Techniques »

Having inj tially specified a concordant set of l’nrpotheses, the
statcd immediat.e goal is derivation of the observation model hypothesis.
In general, we wish to combine the initially specified model components
~ in such a way as to eliminate all unobservable variables and to retain
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all observable variables. ‘There are eight manifest techniques which
~might 'be used if the occasion demands, and there is a natu.ral]y imposed
order of precedence in their use: ‘

- 1. " Exclude the unobservable variables from. consideration in the :

~ first place. This presumes that their influence can be justi-
‘fiably neglected otherwise a specification error i3 introduced
'thereby. o

2. - Eliminate unobservable error variables by the ‘one?to¥one error ,
equation suhstitution transformation. Of the eight operations,
,th.is induces the greatest gain, for the effort expended. e

3. Eliminate fixed or "given variables of a '-onditionsl density '
function, svariables which enter parametrically, using single-
valued functions of other given variables as the equations in-
a one-to-one intersection pro.jection tmnsfomtion

L. Eliminate umtanted variables by .using a non-linear one-to-one
transfornntion, mapping into a space of variables not previ-
ously involved. This presuproses the prior availability or
specification of the appropriate transformation equations,
equations representing monotonic surfaces.

5. Use a more complicated variant or generalization of the third .
technique, whenever the available relationships are not single- - -
‘valued. It is necessary to partition the surfaces into regions
of single-valuedness, and to sum the resultant individual pro- . .

" Jected event densities. This subatitution transformation, ‘ b
being many-to-one, results in some luse of information; how- =~
ever in proper use, this would be the necessary loss incurred -
-in viewing the lvpotheses from the 1imited perspective of the
observable space, '

- 6. Use a more ccmplicated variant or generaliution oi’ the rourth,
" . technique, whenever the available equations represent surfaces

vhich are not monotonic. In such cases, it is necesaary to
-partition the surfaces into regions of monotonicity, such that
the resultant transformation is many-to-one, specifically not
'one-to-mny. The resultant individual projected event densi-
ties are summed in the new space. This is ordinarily the most
general technique applied in transforming density functionms. '
However, it 1is not alvays possible to avoid the one-to-many
partitioning; for example, the transformation surface :ay be
8 hypersphere. There are many interesting ways of dealing -
with such situations; they all require additional hypotheses.
In the case of the hypersphere, projected event mass could be
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allocated to the near and far su.ri‘aces ’ either in a fixed ratio
~or in a ratio which is introduced as an. additional paremeter ==
“to be evaluated. Either specification constitutes an additional
. hypothesis. ‘ I ' o ' g

T Elimimte variables by intersecting a joint density funttion,
‘ and projecting the surface distribution of joint event mass
onto an appropriate subspace.’ This 1s a further generalization
of the third and fifth techniques. o ‘

8. Eliminate the influence of unobsemb‘le variables from: co'lsider- SR
~ation by integmtion. Sum the event mass over the entire space .
- of unwanted variasbles, in order to consider only the projected -

nnrginal d.istribution in the subspe.ce of observable variables

o With prc*er application of these techniques, the observa*icn moael .
" hypothesis is derived. - However, the observation mcdel is stili incom-
- plete, as are the object model and the calibraticn model, in the sense ‘

* - that there are parameters to be eval\nted or estimated.

The pare.meters are. the 6 and 0 vectors R of the ob,,ect model and

. the calibrecion model respectively. There are of course other weys in
- which parameters may be introduced in the hypotheses. Some will be
‘discussed; they are here denoted ¢. Now, given N observations, the -

data are: (x01,, xoai,-i-—--,xmi)',i=l,-7-,N. ~ The 1ikelihood function
:isgivenby o o :
‘ N | ‘
W

The likelihood 1s usuelly nnxiuized by maximizing log L. That is to .-
say, & point is found in the parameter space of9,9, and ¢, subject to
possible initially hypothesized constreints, for which log L attains
its maximm value. Of course, N must at least e¢qual the number of un-
evaluated parameters in order that they be determinate. However, we
are specifically concerned with those situmaticns wherein observations
- are not in short supply and the parameter values are consequently over- o
" determined. Thus, in the presence of sampling variation and specifica-
tion error, the parameter values must be estimated. Actually, many ‘
" difficulties can occur in obtaining the maximum likelihood estimates,
80 the subj~2t is dmlt vith eepurete].v later on, and prectical methods

. The values obtained. i’or the 9, 0, and g may now be used to complete ‘
the associated models. The completed object model may now be sai? to .
provide the best description of the object phencnenon as designsted,
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consistent vit‘x the lvpotheses and the data, according to the pu-inciph
‘of maximum likelihood. '

Also consider ttat the error distribution phenanenc can be the
‘ phanomenon of primary intereat. " The maximm .ikelihood ¢ values yield
. the completed calibration model. However, in cases where the calibra- -
tion model 1s constrained by the object model hypotheses, its use should
ve suspect for points in the space of object variables which are not
in the immed.iate neighborhood of the obJect phencmenon eventa., :

, : It is interesting to- nct;e, in application of ‘the system geneml]y,
. that rounding off of observed values to the number of digits known to

be or suspected of teing significan® can result in loss of information

which is necessary in precise evaluation of the parameters; in particu-
lar where errors are relatively small but significant. Observations.

should probably be reccrded to the maximum precision obtainable from -

the observational method in use. - This 1s clearly contrary +o e:cisting

'prec cice in nmw observational situations. o

7 Ptu'poseml Distributions _

As the final topic- in this general discussion of model constn.c,tion,‘
consider that it is frequentb' necessary to purposely impose a distri-.
bution where none occurs as & natural _consequence of the phenomenon ’
under mvestigation. “The distinction between purposefully distributed
-variables and naturally distributed -mariables is useful in the discus- -
sions of various moiel types to follow. This distinction is solely for
the convenience of the investigstor, and is of no theoretical or philo-
sophical aignificance not previously d!scussed.. The act of purposefully . g

 distributing or weighting a subset of variables, observable or othervise,
simply imposes on the investigator the requirement that the distribution
be separately specified in the object model. - An alternative is to con-

. sider that the purposeful distributfon is a stated condition which '
serves to designate the object phencmenon. This last procedure neces-
sarily restricts the scope of the investigation; nevertheless, it 1s
sometimes appropriate. For example, consider the situation wherein
“there are variables in vhich we have no interest. Then the object

- phenamenon, as designated, may reascnably involve purposeful uniform

~ point selection, either random or systemstic, over the space of the un-

‘ mnted varinblea » in order to linpliry the model specification.

Lnec 4 2x Rasd ~ A S e ,-. PRp N S

: However, in general, the most ‘usefwl procedure is to treat the
 purposeful distritution as a separste but :onst!tuent phenomenon, sepa-
rately specifying the form of the density function and, if necessary, ,
evaluating its parameters either separstely ar concurrently with the
~ object model parameters. Since, by definition, the fuactional form is
- under the direct or indirect control of the inveltigator, speciricntion -
- error should h minimal if not non-existent. .
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Purposeful distributions are most likely to be directly observable,
although this is not necessarily the case;’ theveforve, it might seem most

reascnable to specify purposeful distributions over the space of observ-. '

‘able variables. Unfortunately, many useful object model components,
- taken in conjunctior with a directly specified observable distribution,

are not likely to form a concordant set of hypotheses .. Consequently; it

. 18 frequently preferable to specify the purposeful distribution over the
" space of the associated obJject variables. An important exception occurs
in regression and predictiosn models, where r,he specified ohject vari-
ables ‘can also be observable vartables. : , T .

 MODEL TYPES

gype I Model ' Simele Measurement vith Errfr '

- In this first and s:.mplesu' of all observaticma‘ situutions, the -
’ phenomeron under investigation, by hypothesis, is represented by a. :
single point (91,62,----9n) in the space of object variables, the coor--"
"dinates 'of which, the 6;, are the unkriown parameters to be- evaluated.
- These hy‘pothesized true but unobservable values are masked oy the evrrors
" of observation. In other words, we. wish to perform a simple act of

o measurement 1nvolv1ng error.

. For clarity, but without loss of genem] ity, the '.,ystem is 1llus-
, trated first for a Type I model of two object variables. Thus, the six
variables of interest which define the model space are: Xj, , <he
. obJect variables; €15 €2 the correapom*ng errors of observa iun, and .

X01, xog, the observable variables. ‘

:bJect model 13 g:lven by the equations" ‘

' These squations are structural relationships. 0) and @, are the object.
model parameters, constants to be evaluated. : o ‘ A ‘

'I'he calibration hypothesis is appropriately specif‘ud as a condi-
tional Joint error density fux.ction as follows: : :

v(el,ea/xl,xg;lO)'

Again ¢ is a vector of unevalgabed j:aramefbers.‘,"'
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- neighborhood of

.- Having formulated the initial hypothesee, ithe immediste concern is
- with derivation of the ubservation model hypothesis. Tc this end, the
~.-Initinl hypotheses rmust be combined in such a way as to 2ffect elimi-‘
" naticn of the unobserwible variahles, and ‘ntroduction of the observ-
able variables.. Geometrically, we wich tu project the combined-model
avent mmuss distribution from the model space, or its subspaces, int~
‘the subspace of observable. variab’ es5. _Pirst the error ‘equation‘ trans-
fomntion is appl*ed. . - ’

1v(el'e2/x1’x2;®) ,*' *(X01’x02/x1’x2;9)5*

Thus, the ‘oir.t distribution of observable values {6 given for any

fixed pcint (xJ,x9 in the obJe_cf variable space, However, by our )
kvpor‘msis, the obJect molel, ‘the phenumencn of primary inverest is
.restrlcted tc a single poir‘t in the X1,X2 snar'e,‘ name_y (91,6 ) '

ueanetrtcal]J, at this stage ot the derivat 1on, the model is a
Joint density function, defined over a plane which (s imbedde ! in the
4-dimensional X01:%02: %75 %Xp space. The plane is . the. 2-cimensional’
intersection of two 3- dfmensional hvperplanes, which are cefined for
S X326 and x»6, respectively. The Joint density function is given by

V(xgl;xo§;791;62}¢) E

) 'I'he expression does not involve X1 and ::2. Consequent]y, ve choose to -

“ignore the h-dimensional environment of the -distribution; but in doing
80 we effect the desired one-to-one- tra'xsfomtion, or pcrcjectiun inte -

 the 2-dimensional subspace of observable variables. Thus, the deriva-
tion of the 'h'pe I observation model hypothesia is aocompliebed. ‘

The Jikelihood function can row be formed, and the parame tec esti-

mates obtained. The valucs obtained are denoted 8. ) 92, ana 9. 91 and

62 complete the obJject model.. The ) values obtained, complete the
cnlibration model. However, the calibration mo 2) is suspect for
pointe of tue obiect variable space vhich are n¢’ in the Lmediate

al, a )o
In conclusion of the 'I‘ype I model discussion, note tnat this 2-,

‘dimernsional derivation is symmetrical with respect to the object vari- -

. ablesa; consequently, it extends readily to any number of object vari-
ables. Fcr simplicity in the discussions to follow, veriebles which

are syymetrically “reated in the cerivation ure represented as vectcra.

In fact all model types ac represented are ex»euded to any number or
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'dime'xsions in conaideration ‘of the 1ndicated variables as vectors. :
Thus, the Type I situation and that of other model types are also pre- R
sented without explanation in a more ccmmct schenntic suitab]y 1llus-
 trated for converient reference. e -

In t.he 'I‘ype T illustration, ‘the conditicnal error aistribution is ,
. indicated by contours of equal event density superimposed on the space
. of the object variables. This- -superimposition . so serves to indicate
the appearance of the distribution of observed va’lzes’ over the observ-

o -able space, which may also be thought of as superimposed and appro-

priately in this case, the coo.dinate axes coincide. This superimpo-
‘sition device wiil also be used in depicti':g tre situatlon for other
model types, o . .

‘ gype II Model: All Object Variavles Distributed

The Type II model is c}nracterized by the fact that all obdect
variables are diftributed by mpothems. That is to say, the obdect
model involves spe-ification only of a- joint density function, or its
marginal and conditional density f‘unction factors. The Type I model
is actualh' a trivial special case,. wherein the specified distribution
-assigns all of the event mass to a single point. :

* The ’I‘ype pai illustration shows the case of tvo ob1ect variables.
’I'he initial hypotheses and the derivation of the observation model
“hypothesis are both presented. The generality of the vector notation
should be cousidered Am' number of Type II variants are admissible -
thereby., : : T ' . R :

_'l. | (le"° xn) 1 4‘
-1 v(x) - v(xl,--- xn)‘

-3, (xl,--- ) need not be apecified directLy, es-a single Joint
: - density fux otion; but may be specified in factored form. For
_ example: v(x1r--,xk) v(xk+1.---.xn/x1,---.xk) '

- b, Each of the factors may be either a purposnful distribution or
- a netural distribution. (In an investigation devoted exclusiveq
to ealibmtion, rall factors might be’ purposeful.ly distributed )

o Of' particulnr interest 15 tiat ape"ial cage wherein a subset x, or
_object variables, is observable directly without error. Tat is to say,
ex 0. let y denote thuse other object variables which are subject to B
- . errors of observatiou. Then the initial hypotheses are y(x,y;6) and
' -t(ey/x,y,o)‘ ,, v(ex,vey/x,;',é) The derivation is as follows: - -




TYPE | MODEL: SIMPLE MEASUREMENT WITH ERROR
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v(e /x,y50) = wlyy/x,y;0)
; ‘,W(X,yse)w(yo/x;x;o)' =+ (g %,¥36,9)
‘ 'VZHAoweAver,‘ x‘, O’ 80 that o 7
W(Yo,x)y,ve °) W(YO:XOJY:Q:Q)
end finally

_ L ¥(ygs%0sY5 6,00y = ¥(xy,¥,436,0)

g;pe III Moael Structural VRelationshipsm

T“le 'rype III model obJect variables are re_afed to each other in
: the initial hypotheses - according to one or more specified equations. -
It is also stipulated here that the variables, as specified, do not
‘include or involve the errors of observation. As previcusly stated,
such relationships are known as "structural relationships".

. - -The relationships are preeumed to be single-valued in their respec- '
, T tive y directions, as indicated in the fype III schematic. It 's usu-
- ally the case. t}nt such single-valued repnesentation can be qpeoified.

~In the intersection ope:ation (Derivation 2), whenever more than -
one structural relationship is involved, it !3 of course most expedi-
. tious to B0 order the substitutions that no variable is reintroduced,
atter being previously elimim..ed. ‘

: In cddition to the specified structural relationshipe and the -

calibrution model, & Joint marginal distribution y(x), or its consti-
tuent factors must be hypcthesized, as shown in the Type III 11lustra-
tion. This marginal distribution specification is necessary in onder

" to obtain the conccrdant set of hypotheses. In the usual situation,
vwe would expect thit all of the x object variables would be purpose-
fully distributed; but this need not be the case. Components of this
marginal distribution my occur natuni],/ and be of interest in the

' investigation. " : ,
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~ TYPE Il MODEL: ‘ALVL"OBVJECT V/ARIABLES DISTRIBUTED

X,

' Obiéct Mo‘de] , . (‘( é)
" Calibratior Moael /' »(exlxd))
: “Derivotion of the Observation Mo&erl,H'ypothesis'
7 1 dr(e‘l')i;"ﬁ)r' - 79’(x°|x; »
2. UK 0) - H(RIXi B = Y(XeXi 00

‘3- ff'nr ¢(XQ,X. o'@dx f"'“‘(xo; 0"” :

>R S SURs SV P2 ARSI SRCe . DN 4 PSSR 4 ‘ . -

 Likelihood

- . N : ) A -
(10,‘{ L)nﬁx = L :US ;(x\h ’ o'@ l C
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© TYPE Il MODEL: STRUCTURAL RELATIONSHIPS

L LIS P K

. We..e,le.y;w

e,:

A

o ,Obiec-f Model ‘

T 1. . Jnint Ma.r‘griﬁolroonrsi"'y Fu‘ncvio'n‘ 7 ‘ w(x &)
2 Sfrutiwolﬂolaﬁo’nshépi. ’ y = F(x,‘,O)‘ -

© Calibration Model - ¥fe, e, I Xy &
’7 V‘Defir\'raﬁon of the Ob;eryoféon Model 'H‘ypothé{s‘is o

L e, e, XY~ ixeyolxy; B

2. WxYolXy A~ U(Xoyolx: 0,6, F)
B UKD bxeyalx 0,0 - H(xeyo,xi 6,0.4)

o 4.“ f V'(*Of’%fxi 0,¢>.£)dx ‘:" w(*o'Y6;.0’¢)’€) 7" o
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‘Prédictibn

Frequently, there 1s less interest in the theoretical structural
relationship which underlies the errors of observation, than -there 1is
~interest in predicting observed values y, for given observed values X,.

In such cases, the usual practice is to Fvpothesize no error in x. -

 Wege fuie) *‘?y/’?’vf;)' |

vle,/x,y;0) ,~V‘*:(yo/x,)':0);

Vygxyse) 4'v(y5/x:é;‘9;?5“
_'v'(x‘;'g) -v(yo/'x:G,O‘) = ) v('x,yo;e‘,o,g‘) A, :
but>x ‘ xb; 80 . | | . | > a o |
. *(%’Vo‘,e""’,‘) _’ ‘v(xo;yo.fe,;‘,t) |

- The prediction function 13 then given by

R? (xo.3 3) L vo v(yo/xo.a 3)% ,

Thie is ordimril,v conaidered to be a kind of regreuion, but here -

we call it "prediction". The name “"regression" is reserved here for
,caaea involving no underlying atructml relationship.

Type IV Model Regreuion on Q;aemblo Varnble- |

 In thoae amlysea vhenin all variables are dintributed undar the
, 1n1tial hypotheses, and wherein it is desired to describe the most rep-

. resentative or mean values o« each of a subset of observable variables

- ¥o a8 single-valued functions of the remaining observable variablez
X %9 (i.e., the x are free of observational error), we will say that
“the development is a case of "regression”. We say that the single-

valued functions are "regression _relationlhipl"-. They are defined as
" follows: - - S o - . R
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Yo = Flxy,0) = L Yo (/%5 Blayy

The necessary constituents of the object model are a Joint condi-
tional density function, which in general is given by ¥(y/x;6), and the
' structural relationships x -~ which are also included as a consequence
~ of the model type definiticn. These necessary constituents together-
- with the calibration model completely determine the regression rela-
tionship set YO F(xo,e) Consequent]y, the problem of selecting a
~ concordant set of initial hypotheses is. not trivial. The derivation .~

. of 'che obsemtion model nypothesis is shown in the schemtic.

'I'he ,joint mrginsl density function v( ,g) of the directly observ-
~ able subset x5 or any of its component factors may or may not be of
_ theoretical interest .Since this distribution enters into the observa-
tion model simply as a factor, and since it is directly observable and
therefore may be purposefully and completely specified initial]y, it
- (or any of its component factors) can be entered into log L as an addi-
tive constant. As such; it has no influence in the mximizstion, ,
u.ltimtely on the values 6 and 3 : ‘ -

g In conmon applieetion of regression amlysis ’ ‘no. calibration model :
'is specified; there is no error- in the y variables and *henefore e

v(y/xo.e) = v(yo/xo,e)

Also camon:ly, this conditioml density tunction is initiully lvpothe- o

'sized for a sinela Yo vnrisble and is ususl]y specified ss norml

n(yot d ) = N [r(‘oxe)) y /x

: Further, in ondinsry spplicstion of regression sm]ysis , the observable  :
- Joint marginal distribution is not of theoretical interest. Also °yo

"~ may be thought of as constant and ignored. Thus any specified func-

‘tional form for the regression relationship is concordant, and the
process reduces to curve ritting according to the principle of least

-squares:
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© TYPE IV MODEL: REGRESSION ON OBSERVABLE ‘VAR'IAB'LES“* |

CNRDL 229 €)Y

‘W“’of’r .
- \

- Okject A‘Abcriel' :

‘ 1 Smkrur'all Relérionships - X = xo‘
: ..’ ~ Join? Conditional Dehs:rylv‘Furnvc"yion Lyl x. 6) i
i g ~Observed;.loinv ‘Ma}gknol D_ens»’irygFunctio/n' - 'y(io.ji) B

7 4. - Regression Rel{:rionsrhips’ ‘ YO = F(Xro.e)‘,: f_c ‘yo&(yo‘lxo;())d.\"o

' ,r>Ca|irbr‘qﬁon Modgl, : d(e;‘;ey'lx.y:; D = ¢(e¥|x.y;,¢), o
De'ri\‘rq?‘iréﬁ‘o‘f the Observort‘ipn Model Hypothesis 7 »
L e, Ixy B~ Xy B - 4()’0'7"70':)”:‘97) |

CHyIx )y Ixgi 6

U3 Uxei £) c ¥ %0 0) = ¥(xawi 646)

[S-I

4 Y00y 08) - VI %eyi B = ¥(xeYoi 0,0.4)

LT deyey 0,080y = ke 0.04)

@

C6 dxyef0d) = HKet ) 40l %o 0,9
Likelihood o

~log L = [2 log«t(xo,;&)] + [2 log 4(yo,! X9, 0.@] s
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. | ‘ ' (¥yae - F(x..,8))° 1
~ , 1 Yoy ot 1
(1og L)mnx = 2{:108 [ e = ]
: oML Lg Jem 23
' Yo o Yo
o’rr:j o ' 7 L '
| Q(108 L)min = ‘[y01 .‘,r(XOI’ Ov)V]'l, for con;g?a‘nt'oy‘o.”;

=

'gxpe v Model Discrete Distributions '

‘ In general for the various model types discussed the indlcated
distributions need not be continuous. They may be specified. only for
a rinite number of values of certain of the variables. Suppose that
certain variables x = (Xy,===,Xg,===,Xy) by m’pothesis assume & number
q(X) of values ng % is to say, for each x,,

B xk='ng*;‘a\a:x,-‘-f--.qm S

' ,Ir.ﬁthe‘ni.nner of the Type ‘I'fmodel', these are structural relationships. .
- However, since each varisble assumes a aultiplicity of values, the '

' individual surface distributions of event mass must be summed in pro-

Jection, according to the fifth of the previously listed available
- techniques. -

Por ejnlpl,e, ‘consider a Type IT model. Shﬁpdse that -

Wx,yi0,8) = ¥(x;) -¥(v/x;0)
vhere | | |

O wxst) %_v‘(xJ;gd) =Ny d - 1,e==)q

" Bere, the {4 are the discrete set of x values, vhich may or may not be
known initially; and the n4 are the corresponding set cf nrgiml den-

-11:10., which may or may ngt be known u-itul]: ‘nna o

S ¥(x,¥;0 "IJ;!) =1 ’ 1é°9 . ‘
N 1nd1eat1n¢ mucit mtcrs Ref tha ‘!‘ype II -chemtic, .

we also lnn

3“‘”.



ol V,yo/x,y'b)“ | v(x(“),yo/#yyw)‘:i o

Consequent)y y

V(x ’yO’ q’y 6 ooﬂjxg) = ﬂ '(Y/x 09) V(xonyo/xjxy,o)

'VHowever, we do not proceed exactly according to the Lype II derivation,'

given the q structural’ xelationships, which geometrically are repre-
“sented by constant hyverplanes, the situation calls for & series of q -

intersections of the Joint event mass distribution defined by the above :

- joint density functlon. ‘I'h.is is in application of the seventh of the

previously listed available techniques. The :esultirwg set of q surface’[ ‘

~ Joint density ﬁmctions is given by
W( ,yo,y.o OQWJJQJ:XJ),) J ‘Jl);'ff§Qf'

As stated, the assocliated proJection tmnsfomtion 15 nn'w—to-one md
the densities must be sunmed 1n the subspace. 'I'hus we proceed.
*(XO’YO’kJ’y’e ooﬂdaﬁ) - V(xoayo:yte 0: {,ﬂ)
.“vh’ere"< o , o -
 ¥xpygyiesesen) - i | n’J-v(yst;td)’-v'(‘xo*,yolyso,gj)
3

The 188t step :ls simply to proJect 1nto the obaemble lpace-

v(xo,vo.e,o.t.n) L [‘é‘“" v(v,O.td) v(xo.yo/y.O.tJ)}!.v

In some aitu;tions y it is expecud that ortbur noncénntlnt atruc.-— ‘
tural relationships will also be specified in the manner of the Type II
model. The effect, in such cases, is simply to require the additional
~ associated intersection-projection substitution transformations in the
derivation process, provision for wiaich is indicated in the Type v
schematic. The additional structured variables are denoted Z. Two
"specialized Type V situations are shown in the illustrations.




TYPE V MODEL: DISCRETE DISTRIBUTIONS

~ywly|x“9)
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vix,. &) -
Obiect'ModeI,
1. ) Joint Morgmol Duscro'e Dens:ty Funchons
g(x 3% RRLT a,) oot Lo-o-g
27._ Associated X Valuo D:screte Ser Consrom Structural Relononshtps ‘
= gk) ) J ‘ 10"""'q(k)
s Addmonal Nonconsmm Structural Pela'it;nships oz o= Fox,y, ,w)
4. Joint Condmonal Connnuous Donsny Funcnon 7 ¢(y|x,,0)

g Colnbronon Model ‘ w(e,,e,,e,lx,.y,z, »
- Derivation of the Obigr»)otion M;S,del Hypothesis‘ '
R n,i < Wylxy; 8 = ¥(xpy: 0y |
2. w(e..é,.e Ixpy,z; & = d(XoJmZo'X,.y z; ¢) |
| 3. w(x..yo.zolx,.)'.z \d - ‘P(Xo-Yo.zolx;.y ¢.w, "‘) .
4. ",w(x,.‘y.- .n,) w(xo.yo.zoIX,.y ¢w) = ‘P(’(ooYo-’olxpy. 0¢.w.n,)
| 5 w(x,,y,,zo,x,.z{; 9»"'“""})‘ - W(xo-)'o-zou- 6,0, ":--1)

1

6-" ‘ " 'J(xo.}'o.zo..‘/. 0 ¢ woﬂpi,) W(xo.)'o.zo,y o d’ w "-O
. =1 '

OQ

7. . “'r-n w(xo._vo.zo.‘y; 9.¢.w,‘ﬂ.€)dy = V‘WV(XOo.VOon; 9.¢.w.ﬂ’.f
" or w(Xo,Yo;Zo; 0'¢lwono£) = zl 77, 4 (Xo.przo:X, =£’; o|¢vw‘
' : )= . o

[
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o Af*ribute Distribufionsr

’ "Me generelity of the Pype v model is considerably extﬂndea if we

~ consider- that the x need not be quantitative variables but that the

" discrete "wvalues" they assume may be qualitative. That is tc say, the

.X§ may *epreqent attributes or classifications, of which the relative

. likelihood., or weights,the n.,are under investigation.In such a case,

" the §. are mereliy imp11<1t qualitative parameter" Thus, the observation
model* mrpothesis is given by : ' ‘ o

7 W\x)yo;zo;exo’ﬂ‘)nl = L [ qu.Wj(y;elj)f‘v‘j(yC’zO/y;o‘j’wj)Jd"v
or - q R
W\x’yo,zoye ¢ ’1‘97\) = 2 T‘lj°*j(y0:id;6‘j;°3{a)‘j)

J_

‘Iy‘pe VI Mcdel (‘omtmined Distnbutions

: As prenously stated 1nequalities which are specified in the - )
object model describe region bounda-ies of th. obJject model distribu— .
tions. For this reason, we refer tc these distributions as "ecnstrained
distributtons", and the ordering relationships are cal.led constmints".‘

SRS VTR 1V 1 _ASBE e OR T PRGN

» I'be constrained di st*ibution ‘models vhich are considnred here may
albo involve structural relationships. Such situations are dealt with
- in the derivatiorn schemtic » but are not 1ncluded in the 'xype Vi illus-
) tration. ‘ : . ‘ o )

, The constraining surfaces are denoted Y= G(x,m) “In general th@

‘ requirement that parameters o be evaluated, introduces great difficuity .
in computation with numerical methods currently available. However,
for constant surfaces Y=@.  there is no particular trouble. Also, the

- problem 1s reaolw i ccnpletely l.f tm integmtion can be -wert ormed
'analjticall,y , ‘

"Iype VII lodel: Varifom or Diacontinuous Models ‘

For models of thia ty'pe, various regions of the mod 1 spacc are
' represented by constitue.’. elements of the model which ere dis*inct in
“matunemtical form. The regions are separated by specified. com training
surfaces. ‘The constraining surfaces in this case are caJled "shocl
.ronts", or in the one-dimensional case, "shock points". For example,
a melting point ov a bolling point-is a shock point; in me*eormogy, '
cf’\m fronts or air. ™88 boundariea are s‘qock fronts. :
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TYPE VI MODEL: CONSTRAINED DISTRIBUTIONS

Object Model
1. ‘Joint Density Function - {{X,y: &)
2 - Structural Pelanonsh:ps z = F(x,y,9)

3. - Constraints ' G(X R w)

Calibration Model d(e,.e,.e Ix,y z; cb)

Oerivation of the Observohon Model l-. pothcs-s
1 “(el y'e 'xtY0z @ - ¢(xo.}'o.zol)(.y z, 9
2. W("c-Vo-zo'x-y zv” W("o.)’o‘ olx-}'- 6 ¢ F’

3. WX,y s) w(xo.yo,zolx.y. .@,» d(xo.yo.zo.x.y 00&

e

*o L, W)
f‘ l_ . ¢(Xo.}’o.ze.xoy 0 ¢o£)d}]dx = 4("0.\0.20.0 ‘bng)
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. Two Type VII illustrations are used, to show examples of bcth

change in the form of joint density functions, and change in the form
" of structural relationships. A more compact notatior. than that of the
previous model type has been adopted in the derivation schemtic for ‘
iconvenienﬂe. . .

The same canputational diff" culty, aa in the previous model ty'pe,
may be expec'ced here if the o require ﬂvaluation.

Ind irect Observa'r ion

- First consider a- simple meaaurement situa.,ion, suc.h as tmt of the
Type I model; except that one variable, which is not subject to obse =-
vetiun, with or without the influence of errors of observation, is

© determinec only as a specified sirgle-valued function of the remainirg

variables. ' Under this hypotnesis, ail of the variables. assume constent
.va'ues, the determina'cion of which is the obJect of our effort; but

specifically we wish to obtain that numerical value which is "only in-
: directiy observablc : ‘ : -

It is helpful to refer to the Type I illustration and schennt;ic, in
obzerving that no amount of observation can provide information about
: the single-valued functional relationship. = The functional form must

specified completely in the initial hypothesis. However, estimatore
of the hypothesized constant values of those variables subject to ob--

servation (#nd alsc error of observation) are obtainable through appli- . '

cation of the Type I model. But most important, it is knowvn that:
-single-valued functions of maximum likelihood estimators are also
moximun likelihood estimators. Consequently, the desired maximum like-
l1ihood estimator, for that ‘constant not subjJect to observation with or
‘without error, is obtained indirectly by simple substitution of the
available estir :t;ors into the completely specified single-valued func-

‘ “tion, -

A Similar‘ebnsideretiom app].y in mppif‘g diptribu‘;ims » one-to-one
or many-to-one, from spacee >f which all vaiiahles nre subject to

 observation with or without error, onto spaces the variables of which

~ include one or more which are only indirectly obsei‘:able. The ordinary
~ transformation of coordinates is invoked, and paremeters of the new
~ d:etribution, which are determined thereby, retain the maximum likeli-
~ hoou properties of the primary estimators. However, tue equa jons uf

~ transformation must be completely specified. ‘

Other Model Types

R previously di~cussed model t:ypes no doudbt eneompess a sign'ifi‘- '
- cant fractionrof observational situations likely to arise; however, -
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. TYPE VIl MODEL: VARIFCRM OR DISCOMTINUOUS MODELS

LSy ey,

Ve (XX, o
-y . -

X v Xy, w!

\W\ev ez"‘x Y ¢”

ol
i Ob|6Cf Model R (Fpr simplicity, only two 1'."‘cormsar‘e' ahd;&_afed. o
) Forin'A' o 1. 'Jo:n} M‘argrurva/»Densny Funcr‘:on‘ ;\ (x: &, )
C 7 2. St uc'ural Relar:onsh:pé Vo Fy(x,9,) -
: Form e ' 1. Jo:nr Marglnal Dansity Funcnon . ;R'(‘(,i,( )
‘ , -2, 'Srrucrural Relcnonsh:ps v Fy (x, "
. ShdckFrom “iln ger)qo.' more then one-. reqdi;ed.) Xy = G(R ,\_.;)7‘:
' qu,ibr@':'ion Modél o ;(ex.é',‘IX.)'; )
Denvonon of the Observahon Model Hypothesns :
R ‘J(e..e IX.y o - . »(xo.onX.y %
2A WaYolxyi B T vGaelx: 0y 2 Fy)
2B, d(XeYolxyi & T V(x.yelxi Oy & Fy)
- -3 o 3-A- dA 7("; &A) * “A (Xo'.onX; OA 9 = “A (Xo.)’o‘.X:‘o“ ,‘D,E‘)

' 38 d“ (X ﬁn ) “u (xoo)’o’x 0 n. v¢) ‘In‘ (xoﬁzot"; on -6'{!! )

‘-’,“.“"c(ll,)> ‘ 7‘
4. f f o A("op.‘fo-h'xzi,eu‘f’-h)d"z dx,

‘7: ‘~ + “‘_'3 7 ‘ i ° . ) , : .
* ’ L T (xo,yo,x,,xz 0,, Wby )dx2 d"l = o (XgaYo. Oy 4000y Ex Wb W)
G(x“u) ) ] I :

-
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many situations can arise towhich the availasble model types do not -
_readily conform. For example, the various models may be combined in
configurations of great complexity; also, it will probably be expedient -
to select certein special cases for particular emphasis.. To a lesser
extent, it may be useful to strive for greater generality. Hopetully,
the number of available useful model typer will grow continually as -

experience is gained in applieation of the system. ) ‘

In a large clnss of - obs rvational aituations, not 111 events which
are potentially observable are actual]y obsewed "Thus in general, )
~ there exists an "attenuation function" or effic.ienc,,' of observation

function" , @, defined over the space of object variables ~ In such
cases, the object variable Joint density functwon becanes

v (X) - ax)- v\x)

As a final remrk, in combining the various model tvpes into more
complex configurations, whenever possible it is better to evaluate - -
parameters- of all constituent hypotheses at the same time, in a. single
observation model.

PROBLEMS IN COMPUTATION

. 'So far we have carefully sidestepped the possible problems of com-
putation. In construction of the observational model, difficulties
can arise in nonlinear transformations and projections requiring.inte-
gration:. Following construction of the observation hypothesis and the
1ikelihood fanction, the problem of mximizing log L is encountered

With respect tu the problem of integretion, preeently eveilnble C

- methoda appear to be inadequate for the task at hand. ' The must useful

system applications will probably involve integration over regions of

e,y dimensions. Classical methods are accurate but require excessive

- .computation in the higher dimensional cases. Monte Carlc methods ere
,probeb]y too impreciae for most eyetem epplicetione.

For mximizing the likelihood, there exe severel usef‘ul techniquea
'available, principally the Newton-Raphson method for solution of simul-
' taneous nonlinear equations, and direct search methods such as the
method of steepest asceut. However, it 1s more probeble thet nev, more
poverfu.l methods will be required. , ‘




- o

- ———————

It ismxrfstated ‘purpose to eiupldy automatic computing 'mchines‘forrr
most expeditious application of the system techniques. Thus, although

_amalytic solutions may be feasible in some cases, numerical methods are

to be preferred for the generality of their appiication in automatic
camputation. However, application of numerical methods for integration
in the model derivation and for maximization of the likeiihood imposes
the requirement that the two (or more) techniques must be effected
simultaneously This compounds .he aiz ficulties considerably

'l'hese considerations rnve led this author into an investigation of
numerical methods suitable for use in the system applications. The ‘
basic idea is to partition the multi-di.mensional region of interest by S

8 geries of cuts. Az the cutting proceeds ‘the s-.sgxn—: is represented.

by a number (usually large) of subregions. Prior to each cut, the sub-
region to be cut and the direction of cutting are selected according to o

appropriate indices. Alternatively, an index for termination of cut-

ting 1is used in place of the subregion selection index. The resulting

. subreglons are then represented by a selected point-set. Operations

on this representative point set can ‘then be perfomed to eff'ect the.
solution of a wide variety of multivariaeble numerical analysis proble'ns,

1nc1uding integration and direct searcb optimizat* on., :

. 'The princi;nl vork to date hau been in the area of multlple 1nte- :

- gration. The problem of non-variables- -separable functions has been
. resolved by selecting as the representative point for each subregion, - -
" the intersection of (n-1)-dimensional mean value surfaces, where n is .
N the,dimenaiomlity of the region of integration. . Thece methods rnve
" met with considerable success. The method of integration is presently
progremmed for an IBM-704 computer with a 40OO-word megnetic core
~storage. Multiple integrations can be performed for functions of up -
" to ten variables. For example, the integral ove:r the unit interval of

Exp(x oxaox3.x|‘) has been obtained to better than six significant digits
of preciaion in about seven minutes. For this result, 32,455 points
and 1,930 subregions vere required. Considersbie improvement is expec-

ted if more core storege is available; in particular with respect to
; mcreuing the speed and the upper 11m1t on the number of variables.

With respect to the problem of limultaneous -ntegration and nnximi-

atio., developmental work is in progress. The spproach used is to

generate s representative set of points as atove but over a higher

'~ dimensional space, which includes as subspaces both the space of veri- - -

ables over which integration is to take place and the parameter space
aver vhich maximization of the 1likelihood 18 to teke place. I the
parameter space, the selected index for cutting is the likelihood value.

~or ite logarithm. Subregion midpoints may be used as representative
- points in this space. Integration is best held to relatively low pre-

cision, except for points in the imlediate neighborhood of likelihood

" maximum points .
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.. For the purpose of exploring" multidimensional s'urfacea, such as the E
likelihood surface, a representative point set is particularly valuable.

Locslized maxima or saidle points are not likely to be mistaken for the
absolute maxima. Also, singularities and discontinuities tend o ve
readily detected. Such a characterizat.on of the likelihood surface
‘should probably be reported out as auxiliary information. It could -
- find use in future decision theoretic applications of the model as

B .developed

~In am/ case, it is h0ped t}at the capability tor solution of the
system computation problems will soon be available. This author's
vork* is in preparation. Perhaps the main point to be made at this
. time is not that the methods proposed here for computation will neces- -
sarily ve those which are ultimately best for the general system appli-
cation, but that. vhatever methods are employed they must be based
_computer- oriented mthennt ics.‘ ~

Spec1ficaily, the methods to be used in ccmputatim must not be

based on pencil and paper mathematics. It is inconceivable that inveb-i

tigators can ever hope to deal with problems at a practical level of
“complexity, if they are. to be restricted to the present-dmr pencil and
paper analytic techniques. ‘One .is led to velieve that a nev kind of

" matheratical analysis must evolve, which is exclusively devoted to
Lomputer oriented mathematics. - = S :

Also, if our goal is ‘to see our new mthenntioal methods actmm
" put to use on a broad scale, it is necessary that most of the labor in

application be removed. Investigators generally do not aspire to be o

also mathematicians. They will not be disposed to accept and apply
elaborate new. procedume , unless they are also attractively packaged
and automted. ‘

| UNIDENTIFIABILITY

y 'mroughout this’ puper we have emphnized the Basic Principle ot o
Jection into the observable variable space, At this point, we consider

" the consequences with regam to that information which is neceasarily
lost in proJection. , .

In the usual practical situation, it is not poesible to unique],y
etermine (or estimate) some subset of the real event model parameter

*See "A M°tbodolcgy for Ntmerical Analysis of - Fun"tions of Varw Vari-
. ables, with limpnhasis on Mnltiple Integration ’ by Je w Bendricka.
(‘I‘echn‘cal Report to be published\ ,
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values. A parameter is said to be "identifisnle" if and only if a.

unique value or its consistent estimate is obtainatle, given full know-
ledge of the distribution of observations. In general, unidentifiabil-
ity 18 due to the loss of information in in projecting the distribution of
real events 1n o the apparent event space of observable - variables. How-

- ever, in trivial instances, a case of unidentifiability in effect een be

caused by apecification of superfluous parameters.

'me concept of identificatio:x may be more clear]y explained by meens'
of an example. In considering the error equations, it is evident that

o for each observed event x,, there is an infinite class of possibly true -
. event pairs (x,ex) which could serve to explain the observed event. It

follows that for any given distribution of observed events v(xo), there

" is an infinite class of joint density functions v(x,ex) vhich could have
served to generate v(xg). 1In geueral, in attempting to identify the
true Joint density function v*(t,ex), ve may or my not be "oncerned
~with parameter evaluatim. :

A However, . in this system we are’ committed to parametric representa-
tion of the initial hypotheses. The functional forms hypothesized for
v(x,6) and y(ex/x;®) serve to restrict the infinite class of density
functions vzx,ex,e ¢) from which the given w(xo,e ¢) could have been
generated. Individual members of the class are ideatified by unique
values of the 6 and ¢. To state that the true joint density function

v (x, ex;o*. 0*) is identifiable, is to state that the true ;arameter ,

- values 6% and % are all 1ndividuslly identifiable.

Let the 6% and % be exr'lusively location or trenslation paremeters
(1.e., not shape parameters) of a true structural relationship F*, and
of an associated conditional error distribution respectively. These g%
and #* are particularly susceptible to unidentifiability for the reasons
given. Consider the situation of Figure 3, where a large error bias,

_uniformly applied over the x,y space, is indicated. Observe that errone- o

ous values of 6,namely 6' in the lllustration are also compatible with -
the cbservations under the uaumption of little or no tmnolatiou (or '
bml) of the error diatributim. - :

In such a litmtiun, tln "sloe !wpothesin r vould for the 1nd1-

~cated observations, actuelly represent en equal 11ke11hood alternative .

to the true structural relationship F*. ™ and F' are of course only
twe examples of the infinite family of structures vhlch vould repnesent
equal likelihwd altematives in this case.

nus of course is nort necesurny coneunt over the spuce; there may
be more complex interaction. Also, it is not only the locution pare-

‘meters vhich intersct. However, unidentifiability associated with inter-
~action between the object phenomenon and the errcr phencmenon is but one

b
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~ Fig. 3 Illnstrating Unidentifiability of Location Parameters

 ; case in point , although perhaps the most important cupe. E'ither' the
" object phenomenon or the error pbenomﬂnon can te of tnemselves inher-
: ently unident;fiable. . ‘

- " With reapect to identification, we are not. 'at all concerned with-
‘the problem of estimation. Whether or rot the number of obserations
(or sample size) is large encugh to indicete that the ‘parameters are
Jointly determinate or over-determinate, it still may not be possible ‘
to identify some subset (or even any) of the individual specificd para-_

" meters. However, it should be stated ‘that tms is not necessarily ar. '
: unhappy state of affairs. ‘
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meter spaee, namely

INTERPRETATION OF RESULTS

' Surfaces of Unidentifiabilitx

Thus tm question of identifiability arises for models general].y,
and in particular for individual parsmeters. Unidentifi~bility is
evidenced by the fact ‘that the likelihood function in such cases pos-

' sesses no unique maximum. However in general all pertinent parameter -

information is contained in the relationship between parameters which “
is. implied by the locu., of equal likelihood mxi.mum poircs in the para- ;

‘ vo_op
L(6,0) = me.

Thus at’ least, the functional relationship between . individually uniden- .

tifiable perameters is always identlf.ab e in this sense.

Loci of lik*lihood maximum points, here called "surfaces of uniden-
1“iability", are likely to be multi-dimensional surfaces. - For simpli-

"~ city in discussion, consider- only nonotonic surfaces. Regardless of

the dimensionality af the parameter space, the dimensionality of such

) a surface is equal ‘to the number of parameters which must be evaluated,

arbitrarily or otherwise, in order to establish a unique maximum like-'

" ‘lihood point in the paremeter space. However, it is neither necessary’

nor desirable that parameter values be assigned crbitrerily, ther eby
imposing informtion vhich is unJustifiex by either Joeervation or

' theory.‘ _

It ahcmld be remenbered that our u.ltimte goal is model development.

‘To the extent that non-unique perameter estimates constitute an unsatis-

factory conclusion to the 1nveutigation, the investijator may wish to
nodify his specified hypotheses or take some other appropriate action.
fnis he is uniquely qualified to do. He alone may possess valid auxili-
ary information, not previously included in the specifications; and he
alone establishes the: goals and criteria of the investigation. For -

k example, he may know of no mechanisr involved in’ observation which

could justify the presumption of bias (E(ex)#0). He might therefore

'chooee to uaume no error ‘bias (using a criterio. ot‘ mximum simplicity)

A system requirement of no error bias would tend to dispose of un-
identifiability due to interaction between the calibration and oblect
models. However, it iz specifically not the object of this diecussion

"to require, or even investigate, corditions for complete 1dent1fiab,111ty‘

of either models or individual parameters. In no case is it reasonable
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that, for computational or amlrtic convenience, ,ve impose assumptims
and conditions which are not realiatic or generan,y acceptable in

- scientific invest).gation.

Thus, c.xaracterization of the set of all equal likelihood nnximum 9

'points in. the parameteil space is the appropriate ultimate conclusica

- in any single application of this system. Further, it is essential

= . can take Lhe fora of :

tlat the computer output be of such a form as to facilitate the investi- -
- -gator's interpretation and use of the results. The characterization

1. A mique evaluation or estimate for each parameter.
" 2. A set of functional relationships between parameters vhich are
- individually unidentifiable. ,
"3 A representative subset of the likelihood mximum points. :
LA combination of these.

W1th respect to computer output, in some simple cases, tabu..ation may - ‘ .
suffice.. In other cases, graphical or analytic representation of the “*‘ ‘
swface of unidentifiability would be required. Analytic representation 3
might possibly require "fitting" a specified functional form to & repre-
sentative set of points either in reapplication of the system or by )
- appropriately modifying the initial hypotheses. However, graphical
representation of selected cross-sections vould seem also to be gener-
ally conven:i ent. - . - ‘

- In some trivial cases ’ superfluous unidentifianle mmmetera can be
‘ eliminated by simple substitution, using the indicat. ' relationship.
- However in general, more elaborate procedures are rec.ired; and in some
- cases, the unidentifiability vill probub]y never be & \tiafactorily re-
solved. :

» Galibratioo

S Presumbly, the moot common fom of unidentifhbility is tbt ‘

. associated with errors in observation. In measuring a table vith a

previously unused ruler, ve -cen never be absolutely sure that the scale

~ is not significantly either tco short or too long, and if so by how

~much. Classically the scale is ‘calibrated against a ‘known and accepted

' standard. It clearly serves no purpose to check the measurement against Ty
other previously unused scales, assuming no other informatiom. Or in =

general, when calibration models include unmlunted location paremeters,
no purpose is s2rved in substituting other methods of observation, the '
associated calibretion models ror vhich also 1nvolve unmluated loca-

tion parameters. .
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o Actual calibration against appropriate "standnrd obJect phenomena
" is much to be desired, perhaps more so for the more complex phenomena ,
" and models: In application of the system for the purpose of calibration,
we seek more camplete specification cf the calibration model prior to
its use in con,junction with other nonstandard otject iodels. . The ideal.
standard object phenamenon might consist of a- f‘inite, more or iess wni-
form lattice of event points distributed over the object variable space, ‘
- at least encompassing the range of variables within which the object

. phenomena to be investigated are likely to be centered. Parameter
~ wvalues of the standard obJject phenomenon mcdel are most appropriately

- established ‘by definition or with reference to other ‘known standards.

'I'hu.s in the usual calibration situation, the calit,ration :r.;del
mmmeters alone remain to be evaluated. Unidentifiability due to
error is thereby eliminated, unless there is unidentifiability inherent
in the error phencxnenon model as specified. However, it is conceivable ,
" that not all ‘standard object phenomenon peramete: values will be
established previously. In such a case, they may be evaluated along
with the calibmtion model parameters, providing no unidentifiability
© 1is introduced by the interaction. '

A requircment that actual calibration \be employéd in all ca,ses may

‘be unnecessarily restrictive. Giver a surface of unidentifiability or -
. the set of all maximum points, in general we desire that the appropriate

" number of parameter values necessary for complete identification be '
included in the model specifications. - This does nct mean that all
parameters evaluated by specification must be calibrecion model pare-
_ meters.. They need only constitute that subset of the nece.sary .ize
about which the most informaticn, not otherwise employed, is available.
,Actml calibrntion is only one possible source of such inf‘omtion, '

‘ In the usunl practical application of the system, where unidentifl-
_ability due to error is present, actual calibration is probably to be
. preferred over other means of effecting complete identification. In
.each speciric munce, ,on:Ly the 1nvestigator is qualified to decice

_ Considerstions in Ihnkirgg Models

An 1nveotigator my choose 1nitia11y to 1nclude an additional para-
‘meter in the model (a "fudge factor"), hopefully to counteract a poten-
. tial weakness in his th.ory, or as a device in theoretical exploration.
- The introducticn of additional parameters, above and beyoiad thuse which
are truly Jjustified by current theory, will nct necessari.y result in
unidentifiability. Parameters which are superfluous in this seise may
take on estimated values which are un.que but effect no significant
“influence in the model. Another possibility is that tne adaitional
flexib.:' ity thcveoy htroduced into the model will result in a ‘xibher '

- L8




" but misleading value for the maximum likeli%ood; a better fit is ob-
tained tu that veriation in the observaticrs which is attributable

'solely to the randum component in sampling. Since this is always a

- dangerous posgibility, the need for large samples and verification is
again evident : ‘

A deficiency in the number of specified unknown parameters may or -
may not result in unidentif.nbili‘.y. -However, auch a deficiency always
' constitutes a specification error and ‘a poor fit of the model to the
. observational date must r=sult, with a consecuent. low. value for the
mximum likelihood. . :

‘ In: gencml, we can expect a higho-r maximum va]ug for the ikelihoad
with a more complicated model; but as elways, we dc nct further our.

-¢m8] of r del development unless a state of contro] is alsu :stablished. o

Pernans the maximum likelihood values should also - be considered in re-
4so‘virg quzstions of state of control. ’ : o

r(e"a"l ‘also that maximun likelihood is an acceptable criterion for '

“eelection o1 the best model from ¢ number of models, providing that the -

‘same data it used in each case. Thus & direct maximum likelihood com-
perison of object. phenomenon mod:1s, vhich have been developed using
. differcnt methods of cbservation, is not necessarily valid. Additiomal
{nformrticn concerning a state of '"m:tual control” on the designated
prenomens. may be required. Also, an ‘ad,justngnt must be made for the
-difference 1in sample size. ‘ ’ ‘ ' Co C

» ' Availability of the likelihood value mkes its use convenipnt in

" ranking models; alsc the aasociated difficulties do not seem to be too
seriots. However, this method of ranking is probably not that wnich.

is ultimately best.®* Consider that the ability to predict has been
associated, in an earlier section, ‘with the idea of understanding.
Prediction is only temporal extrapolation.  Thus we can regard the

" - ability to extrapolate in the direction of other variables as a useful

criterion of the achievement of undersunding, and consequently e u.seml
criterion in mnking nodeh.

D Every model, and 1in fact every functioml modosl component, can. be :
-regarded as an implicit function of any variable in nature which is not
‘already involved in the functional expression. Model. components, by -
their specification, are preouncd to be unchanging in the coordinate
directions of those variables vhich are cmitted. Thus » NoO vuri.able

‘io excluded from considention in this sense. .

' ’Note t)nt "Goxdness of Pit", in iu specinlized seme, is not con-
sidered in this diacuuion.
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© Clearly: the ability to predict is also evidence of a siate of .
control; and further, the ability to extrapolate in the directicn of
other variables 1s cvidence of e generalized state of control. Thus,
given some quantitative measure of generalized state cf contro!, such
measure mLy also be appropriate 1r not supcrior to 1ikel 1hood,‘ in
nnking modela. ' o ‘

Sute of Control -

Rcrclil‘thnt the object phenomenon, as designated, acx,mllarryconst‘.-“‘
tutes a class of phenomena, namely that which is the logical inter- =

section of classes established by the individual designating: 3tatement.,‘;; R

Within the desi.,mted class intersection, there is genemlly roon for

some detectable variation (1i.e., acceptable variation in "representa-

~ tive" gets of obeorvat.ions), random. or otherwise. Any such variation
which i8 excessive, eccording to some criterion, is ay def‘lnitiOr ev*-,
dence of lack of control.r ‘

o any serious ntt.empt at model developnent. an- i dicaned ..igni-- .
ficantly largz lack of control can hardly be tolerated. The investiga-

" tor will vsually choose not to narrow the scope of his investigation. -

- From the information available, he will probably attempt to adjust his
- -initial specifications. Parameters will tend to vary in the degree to

" which they are reproducible. He may therefore specificelly devote his

“attention to those model punmeters the values o. vhich are relativeL o

' ‘out or control. 7

: Criteria for control are beat esu\blished with reference to the

- distribution of observations. -However as stated, the acceptable rosi-
"dual variation is also influential in the paremeter space. Corcider a
situation involving unidentifiability, vherein a number of :ndependent .
" investigations sre conducted; and in each case, vith the same object

. phenamenon, the same method of observation, and the same initially
- ‘specified lypotheses. Then fron eacn mVectiption, a surface of un -
idantifubility results. o , , '

o An\ning only one mlber in the deligmted ob,ject chss, or a "per-
‘fect state of control”™, for large sample size we would expect that all
of the surfaces would effectively coincide. However, in practical model
development, even assuming no sampling error, perfection is not likely

" to be achieved. A more likely result is depicted in Figure 4. Fere,
four surfaces ,------,&, are shown to be intersecting; although in
genenl, thcre 8 no reason tiat they lhould

~ Ir the parameter npnce, measures of state of control could ret‘er
to varistion about some "central point". For example, the least squares
point for distances normal to each surface, vhere such exists, might .
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Pig. 4 Evidence of Sbeciﬁcation Error or lack of Control =~

- 51: o;)tm\xin. Am{ dec reasing function of the minimum sum of sqmres
&ould ther. be used to ndicate degree of ccntrol.

A The dotted circle of the 1lluatration can be said to define a
region of acceptable risk; and in the same scnse, the least squares

©  point may be considered to indicate the safest parameter estimates.

~ This is a barefaced behavioristic point of view; but it seems to be .
reaaonable umler the. circwtancel.

‘ 'I'hus, in these mo, the developunt of mtheunticul models ny be -
pu.rsued '

 CONCLUDING REMARKS

We have ‘beenvpvrmav'ri]y concervned' with the elimination of unduc ,
- - restrictior's which are imposed on the investigator in his acceptance
of currentiy available procedures for data analysis; a corollary concern
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has been to point cut some important deficlencies of ordinary investi-
gative procedures. To this end, an extension and synthcs s of acienfi-'
7 x‘ic methods has bepn attemp’ced ‘ - :

A subsidi.ary (;oal has been to contvibute to the eliminaticn of
~inefficiency in. scicntific inves_ti@ation through ‘contribution to methods
. of organization and presentation. Ultimetely, automation must. effect
the greatest influence. In view of these gaals, it is hoped that this

- paper my also serve as a procedural gul de or }Bndboon.

By the term "inigial specifi"atidns",‘ it,is not irtended to imply
- ‘that no labor is invcelved dn their formulation. In fact, it is likely
- that this will constitite the investigators most difficuit problem,
since it is nere that nis un! qu.c prof’essional 5kills find their great-
elst:appl,i‘cation. -Yowever, t 15 here alsc that the statisticisan may
_prove most helpful. In particular, he may assist in or even direct
conntruction of the calibmtion‘model. Also, he may assist in the
Aa"tual calibmtion. S - : -

. ) 'I'he de\.clopnent ot 'nathenntical models must’ of‘ course proceed con-
: mrentb' with the derelopment of the aasociuted scientific. ‘discipline.
"In the usual situation, initial hypotheses =re formulated with refer-
ence to previously developed object models, and in the light of new .
- information. Consequently, no ~vervhelming difficulty need sttend con-

struction.of the initial lypotheses at any one stage of the develownt. E
" The same conditions of cou.rae app]y in fomulation of *he calibration o
'.Tmodel rwpothesee. , B ‘
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